Instructions for

Equation Nuggets

February, 1999 (V3.0)

INTRODUCTION

The fifty equations loaded into the SOLVER equation section were selected for their relevance to building diagnostics in both the residential and commercial area. Each of the equations is explained in this document. There are two lists of the equations at the end of this section, one list is a printout of the equations by name, exactly as they are entered in the calculator. The other is a list describing the uses of each equation. This is a handy list to carry with you.

The powerful SOLVER equation feature of the TI-86 calculator allows you to solve for <u>any</u> of the variables of an equation as long as values for all of the other variables are entered. No rewriting of the equation is necessary. You can do "what if" analysis, guess answers and quickly find the right one, and find the limits of your variable values.

An extremely useful feature of the TI-86 calculator is that variable values from one equation or program are automatically saved to memory until the value is changed by a new value keyed in by the user. A few examples for clarity: If you wish to calculate the dew point temperature of the air in a building, you must first use SOLVER equation "AHRAT" to calculate the humidity ratio, the variable for which is "HuRa." If you solve for "HuRa" and then move to the SOLVER Equation Nugget "ADEWP," the variable "HuRa" in this second equation will not have to be entered, it will already be there.

A second example of this memorized-variable-value feature: You are performing series leakage testing on a building with the use of the pressure diagnostics (Press) program in the TI-86 calculator. Using the "hole method" you find the building-to-zone pressure is 37 Pascals and the zone-to-outside pressure is 13 Pascals. You enter each of these as program inputs to find building-to-zone, zone-to-outside, and total-path CFM₅₀ values. Now you want to find the building-to-zone leakage as a percentage of the zone-to-outside leakage. When you call up the SOLVER Equation Nugget "ASERP" for this purpose, you will find that the needed building-to-zone and zone-to-outside pressure values are already loaded for you; no need to enter them.

Equation Selection

The EQUATION NUGGETS were collected and programmed by Rick Karg of WxWare Diagnostics, a division of R.J. Karg Associates, with the valuable help of Neil Moyer.

Nugget-1	ean:	Activate the TI-86 be pressing the ON button. Press the light orange 2nd button, and then press the SOLVER button (this is the second function of the GRAPH button). You will see the screen at the left. The menu of equations available to you are displayed at the bottom of the screen. The first set of five SOLVER equation names is displayed. Each useful SOLVER equation begins with the letter "A." The equations
Nugget-2	eau:	The second set of five SOLVER equation names is displayed. For a quick overview of all fifty equations, refer to the equations lists on pages 77 and 78. Press the MORE button.
Nugget-3	ACLES ACLES ACOSO ACOAR ACOLPA	The third set of five SOLVER equation names is displayed. Press the MORE button.
Nugget-4	eqn:	The fourth set of five SOLVER equation names is displayed. Press the MORE button.
Nugget-5	ACONGIACORMIADEWPLADUCTI AELA M e9n:	The fifth set of five SOLVER equation names are displayed. Press the MORE button.
Nugget-6	ean: AHET2 AHET3 AHET4 AHET5 AHET64	The sixth set of five SOLVER equation names is displayed. Press the MORE button until you have gone through all the equations— fifty—that begin with "A." Equations after this (that do not begin with "A") are not intended for your use here. You can freely move through this list of SOLVER equations to get to the equation you need. Press MORE until you get back to the first set of five SOLVER equations,

Nugget-7	ean: Rol D Abmi Acfm Acfm1acfmdiacfmph	Press the orange 2nd button, and then press the RCL (recall) key (this is the second function of the STO > key). This is the method you <u>must</u> use to call up a SOLVER equation; there is no other way. You cannot just press the chosen menu key without the RCL key. You will see the screen at the right displayed on you calculator. Notice the "Rcl" (recall) is displayed at the bottom just above the equation menu.
Nugget-8	ean: Rol ABMI ABMI ACEM IACEMIIACEMAIACEMPH	Notice that "ABMI" is now displayed at the bottom of your screen to the right of "RcI". Press ENTER. ABMI is the body mass index equation. It has nothing to do with building diagnostics; it will show you whether you are a healthy weight (BMI less than 25), overweight (BMI from 25 to 30), or obese (BMI above 30). It is
Nugget-9	ean: BMI=(Wt*704)/Ht^2 ABMI LACEM LACEM1 ACEMALACEMPH	The "ABMI" equation is now loaded into the SOLVER feature of the calculator; the SOLVER working area. This powerful feature allows you to solve for any variable in the equation if you enter values for all the other variables (there is no need to rewrite the equation to do this). Notice that the equation seems to extend beyond the right side of the screen. Use your right arrow (cursor) button to view the rest of the
Nugget-10	BMI=(Wt*704)/Ht^2 BMI= Wt= Ht= bound={-1e99,1e99}	Press the down arrow button once or the ENTER button. The three variables for this equation—BMI, Wt, and Ht—are listed. Ignore the "bound" line of information. Notice that the menu changed at the bottom of the screen when you pressed ENTER or the down arrow button once. Of these displayed menu features, "SOLVE" is the one you will use the most. For instructions regarding "GRAPH, WIND, ZOOM," and "TRACE," see the TI-86 instruction
Nugget-11	BMI=(Wt*704)/Ht^2 BMI= Wt=192 Ht=72 bound=(-1e99,1e99) GRAPHI WIND ZOOM TRACE SOLVE	Let's assume you weigh 192 pounds and you are six feet tall (72 inches). Let's find your body mass index to determine if you are a healthy weight. Enter 192 on the "Wt" (weight) line. This should be in units of pounds. Move the cursor to the proper line with the cursor arrow keys on the TI-86. Enter 72 on the "Ht" (height) line. Your height must be entered in units of inches. If you make a mistake, just type over it or position the cursor over the
Nugget-12	BMI=(Wt*704)/Ht^2 BMI=26.074074074074 Wt=192 Ht=72 bound=(-1£99,1£99) Pleft-rt=0 GRAPHI WIND ZODM TRACE SOLVE	Now move the cursor to the line for "BMI" (body mass index). With the cursor on the "BMI" line, press F5 for "SOLVE." The body mass index is just over twenty-six. You're overweight! Let's find out what your weight must be to have a healthy BMI of 25. Go to the next panel, "Nugget-13."

Nugget-13	BMI=(Wt*704)/Ht^2 BMI=25 Wt=192 Ht=72 bound={-1e99,1e99} left-rt=0 IGRAPHIWIND 200M TRACE SOLVE	Enter 25 on the "BMI" line. Move the cursor to the "Wt" line below. There is no need to clear the "192" value from the previous example. You may do so by pressing the CLEAR key; this clears the line where the cursor is located. With the cursor on the "Wt" line, press F5 for "SOLVE."
Nugget-14	BMI=(Wt*704)/Ht^2 BMI=25 • Wt=184.0909090909091 Ht=72 bound={-1e99,1e99} • left-rt=0	You see that you must get your weight down to 184 pounds for a body mass index of 25. The body mass index can be helpful and fun at parties, but the important point here is getting the Equation Nuggests to work for you. Notice that you can solve for any of the variables by assigning values to the others—a very powerful feature! Notice the small black square to the left of "Wt," indicating the last variable
Nugget-15	BMI=(Wt*704)/Ht^2 BMI=25 Wt=184.0909090909091 Ht= bound=(-1E99,1E99) left-rt=0	It is recommended that you delete the values for each variable before you move on to another Equation Nugget. This frees memory in the calculator. Place the cursor on the "Ht" line and then press the CLEAR key. The value for the "Ht" variable will be deleted.
Nugget-16	BMI=(Wt*704)/Ht^2 BMI= Wt= Ht= bound=(-1:099,1:099)	Now delete the variable values for the others, "Wt" and "BMI."
Nugget-17	ean: BMI=(Wt*704)/Ht^2 ABMI LACEM ACEMIACEMALACEMPH	Move the cursor to the top line. Notice that the lower lines disappear. It is very important to delete one Equation Nugget from the working area of the SOLVER function before you load another one into the working area. One equation loaded over another can result in the mixing of the equation variables, yielding strange and meaningless answers. So, with the cursor on the top line, press CLEAR.
Nugget-18		Now the calculator is ready to load another Equation Nugget in the working area of SOLVER.

Nugget-19	eqn:	Let's try the next Equation Nugget. Press the orange 2nd key and then the RCL key. You will see the "RcI" (recall) at the bottom left of the display, as on the example display at the left. Press F2 for "ACFM."
-	RCI B ABMI LACEM LACEMILACEMALACEMAN	Notice that "ACEM" is now displayed at the bottom of your screen to the
Nugget-20		right of "Rcl". Press ENTER. The "ACFM" equation is now loaded into the SOLVER feature of the calculator.
	ABMI LACEM LACEMILACEMALACEMAN	
Nugget-21	ean:cfm=(CFM50/50^.6…	 ACFM (pressure created by exhaust devices). cfm = cubic feet per minute of exhaust appliances. CFM50 = blower door test results at 50 Pascals pressure. P = pressure difference between indoors and outdoors created by operation of exhaust fans (shown as positive number, but actually is negative). Press the down arrow button once or the ENTER button.
-	ABMI LACEM LACEMELACEMALACEMEN	
Nugget-22	cfm= cfm= CFM50= P= bound=(-1£99,1£99)	Ine three variables for this equation—cfm, CFM50, and P—are listed. Ignore the "bound" line of information. Notice that the menu changed at the bottom of the screen when you pressed ENTER or the down arrow button once. Of these displayed menu features, "SOLVE" is the one you will use the most. For instructions regarding "GRAPH, WIND, ZOOM," and "TRACE," see the TI-86 instruction manual.
_	IGRAPHI WIND I ZOOM I TRACE I SOLVE I	
Nugget-23	cfm=270 cfm=270 CFM50=2290 _AP= bound={-1£99,1£99}	Let's assume a 1500 square foot building with a CFM ₅₀ of 2290 has a kitchen vent fan (100 cfm) and a bathroom vent fan (50 cfm). Will venting the existing unvented dryer cause excessive negative pressure in the house? We can't actually test for this until the dryer is vented. This equation can help. The existing exhaust fans plus 120 cfm for the dryer add up to 270 cfm if they are all operating at the same time. Enter 270 on the "cfm" line.
	IGRAPHI WIND I ZOOM I TRACE I SOLVE I	
Nugget-24	стт=(UFM5U/50∩.65)(д cfm=270 CFM50=2290 • дР=1.8644553029189 bound={-1£99,1£99} • left-rt=1£-11 GRAPHI WIND 200м TRACE SDI VF	Move from line to line by using the arrow buttons or ENTER. If you make a mistake, just type over it or position the cursor over the mistake and press the DEL (delete) button. Move the cursor to the "P" line. With the cursor on the "P" line, press F5, "SOLVE." The house pressure created by all the included exhaust appliances running at the same time is displayed (this equation assumes a building n value of

Nugget-25	cfm=(CFM50/50^.65)(д cfm=270 • CFM50=1206.04569880 дР=5 bound=(-1699,1699) • left-rt=0 GRAPHI WIND ZOOM TRACE SOLVE	You may solve for any of the three variables in this equation. Notice that a small, square bullet is displayed to the left of the variable for which you last solved. Another example: Suppose we assume that -5 Pascals is the highest negative pressure this building can tolerate without backdrafting problems. Enter 5 on the "P" line (no need to enter a negative sign). Move the cursor to the CFM50 line and press "SOLVE," F5. We have found
Nugget-26	сfm=(CFM50/50^.65)(д • cfm=310.51062191943 CFM50=1387 дР=5 bound=(-1£99,1£99) • left-rt=0 GRAPHI WIND ZOOM TRACE SOLVE	Another example: Let's assume the Building Tightness Limit (BTL) for this house is 1387 CFM ₅₀ (this can be calculated with the BTL program loaded in your TI-86 calculator). Enter "1387" on the "CFM50" line. We want to find the maximum cfm we can exhaust from this building without creating more than -5 Pascals of pressure. With 5 entered on the "P" line, move the cursor up to the "cfm" line. Press "SOLVE," F5 , to find the answer of 310 cfm.
Nugget-27	ean: ofm=(CFM50/50^.6 Frem: Lacem lacemilacemalacemen	Move the cursor up to the top line, the equation line. You may change the equation for your use, but your changes will be temporary. You cannot change the equation in the memory, so the next time you call it up, it will not reflect your changes. NOTE: Before calling another equation up, locate the cursor on the equation line (the top line) and press the CLEAR button (just below the down arrow button). This is very important.
Γ	[= I	The equation is cleaned
Nugget-28	ean: Rol Abmi Lacem Iacemilacemalacemen	To call another equation, press the light orange 2nd button, and then press the RCL button (this is the second function of the STO > button). Your screen will look like the picture at the left. When you press one of the menu buttons at the bottom of the screen, the SOLVER equation name will appear to the right of "Rcl." Then press ENTER to load that equation into the SOLVER.
Nugget-29 Nugget-28	RC1 REAL REMITACEMTACEMITACEMATACEMEN VentFan=J(((Bt1/LBLn VentFan= Bt1= LBLn= CFM50= bound=(-1E99,1E99) GRAPHTWIND TZOOM TRACETSOLVE	The equation is cleared. To call another equation, press the light orange 2nd button, and then press the RCL button (this is the second function of the STO> button). Your screen will look like the picture at the left. When you press one of the menu buttons at the bottom of the screen, the SOLVER equation name will appear to the right of "Rcl." Then press ENTER to load that equation into the SOLVER. The next Equation Nugget is "ACFM1." ACFM1 (determination of vent fan size when house is "too tight"). VentFan = required cfm of continuously operating exhaust fan. Btl = Building Tightness Limit as determined with the "BTL1" program, BTL routine (a program loaded with the ZipTest Pro software). LBLn = Lawrence Berkeley Lab. correlation number as determined by the same program referenced just above. CFM50 = actual blower door test result at 50 Pascals of pressure.

Nugget-31	CFMadDp=CFMnom*((Tou CFMadDp= CFMnom= Tout= Tin= bound=(-1E99,1E99)	ACFMd (depressurization blower door result temperature adusted). CFMadDp = blower door CFM temperature adjusted for depressurization test. CFMnom = nominal blower door reading before adjustment. Tout = temperature indoors, $^{\circ}$ F. Tin = temperature outdoors, $^{\circ}$ F.
Nugget-32	CFMadDp=CFMnom*((Tou • CFMadDp=2027.071829 CFMnom=2200 Tout=10 Tin=70 bound=(-1E99,1E99) • left-rt=0 GRAPH WIND ZODM TRACE SOLVE	For example, assure the "CFMnom" = 2200, "Tout" = -10, and "Tin" = 70. Note that to enter a negative number you must use the key to the left of the ENTER key, not the subtraction key that is two above the ENTER key. Move the cursor to the "CFMadDp" line and press F5 for "SOLVE." The temperature-adjusted CFM is 2027, less than the nominal 2200. This adjustment is for a depressurization test. Clear the variable values and the equation before moving on to another.
Nugget-33	CFMadPr=CFMnom*((Tin CFMadPr= CFMnom= Tin= Tout= bound=(-1E99,1E99)	ACFMp (pressurization blower door result temperature adusted). CFMadPr = blower door CFM temperature adjusted for pressurization test. CFMnom = nominal blower door reading before adjustment. Tout = temperature indoors, ^o F. Tin = temperature outdoors, ^o F.
Nugget-34	CFMadPr=CFMnom*((Tin • CFMadPr=2387.680560 CFMnom=2200 Tin=70 Tout=10 bound=(11699,1699) • left-rt=0 IGRAPHI WIND ZODM TRACE SOLVE	For example, assure the "CFMnom" = 2200, "Tout" = -10, and "Tin" = 70. Note that to enter a negative number you must use the key to the left of the ENTER key, not the subtraction key that is two above the ENTER key. Move the cursor to the "CFMadPr" line and press F5 for "SOLVE." The temperature-adjusted CFM is 2387, more than the nominal 2200. This adjustment is for a pressurization test. Clear the variable values and the equation before moving on to another.
Nugget-35	ACH5o=CFM50*60/(FT2*) ACH5o= CFM50= FT2= CG= bound=(-1e99,1e99) Igraphi wind i zoom (trace) solve)	ACH50 (air changes per hour at 50 Pascals building pressure from CMF_{50}). ACH50 = is air changes per hour at 50 Pascals of building pressure. CFM50 = is the CFM of the building at 50 Pascals of building pressure. FT2 = is the square feet of occupied building area. CG = is the ceiling height (FT2 x CG = volume).
Nugget-36	ACH5o=CFM50*60/(FT2* ACH5o=13.75 CFM50=2200 FT2=1200 CG=8 bound=(-1e99,1e99) Ieft-rt=0 IGRAPHI WIND I ZODM TRACE SOLVE	For example, if the ceiling height, "CG," is 8 feet, the square footage of the conditioned house, "FT2," is 1200, and the "CFM50 is 2200, the ACH50 value is 13.75. This is the Air Change per Hour at 50 Pascals of pressure difference between the indoors and outdoors.

Nugget-37	WCHILL=(((10.45+(6.6) WCHILL= SPEED= Tout= bound=(-1e99,1e99)	 ACHIL (equivalent wind chill temperature). SPEED = wind speed in miles per hour (this can be calculated with the "AIRSP" equation included in the Equation Nuggets). Tout = temperature in degrees Fahrenheit. If the temperature is below zero, enter a negative sign before the number (you must use the negative-sign button to the left of the ENTER button). This is the wind chill temperature spoken of by weather forecasters.
Nugget-38	WCHILL=(((10.45+(6.6 •WCHILL=-59.10557542 SPEED=25 Tout=-10 bound=(-1£99,1£99) •left-rt=0	Try the example displayed at the left. Remember that the negative temperature "Tout" must be entered by using the (-) key to the left of the ENTER key.
Nugget-39	ACH=CFM50*60/(LBLn*F) • ACH=. 916666666666667 CFM50=2200 LBLn=15 FT2=1200 CG=8 bound=(~1E99,1E99) GRAPHI WIND I ZOOM I TRACEI SOLVEI	ACHN (building air change per hour at natural pressure).CFM50 = CFM_{50} from the blower door test.LBLn = Lawrence Berkeley Lab. correlation factor. This number is displayed bythe Building Tightness Limits "BTL1" program, "BTL" routine.FT2 = square footage of the house.CG = ceiling height (FT2 x CG = volume).Run through the example at the left, solving for "ACH."
Nugget-40	AREAcir=.78539(dia^2) • AREAcir=78.539 dia=10 bound=(-1699,1699) • left-rt=0 GRAPH WIND 200M TRACE STUDE	 ACIRa (area of a circle). AREAcir = the area of the circle. dia = diameter of circle. Work out the example at the left. The units for the area of the circle will always be the square of the units for the diameter, e.g., a circle with a diameter of 10 feet had an area of 78.5 ft².
Nugget-41	CIRcir=3.14159dia • CIRcir=31.4159 dia=10 bound=(-1£99,1£99) • left-rt=0 GRAPH WIND ZODM TRACE SOLVE	ACIRc (circumference of a circle). CIRcir = the circumference of the circle. dia = diameter of circle. Work out the example at the left.
Nugget-42	ALCcost=((.026*CDD*K ALCcost=49.96216216 CDD=1000 KWHcost=.12 CFM50=2370 LBLn=18.5 SEER=8 IGRAPHI WIND I ZOOM TRACE SOLVE	ACLG1 (annual cooling cost of air leakage).ALCcost = annual cooling cost in dollars.CDD = cooling degree days.KWHcost = kiloWatt hour cost of electricity.CFM50 = CFM50 from the blower door testLBLn = Lawrence Berkeley Lab. correlation factor. This number is displayed by the Building Tightness Limits "BTL1" program, "BTL" routine.SEER = seasonal energy efficiency ratio for cooling equipment.

-			
Nugget-43	SAV100C=((.026*100*C •SAV100C=21.08108108 CDD=1000 KWHcost=.12 LBLn=18.5 SEER=8 PBPer=10 GRAPHIWIND ZOOM TRACE SOLVE	 ACLG2 (cooling cost-effectiveness guideline for air sealing). SAY100C = cooling cost-effectiveness guideline per 100 CFM₅₀ reduction. CDD = cooling degree days. KWHcost = kiloWatt hour cost of electricity. LBLn = Lawrence Berkeley Lab. correlation factor. This number is displayed the Building Tightness Limits "BTL1" program, "BTL" routine. SEER = seasonal energy efficiency ratio for cooling equipment. PBper = reasonable payback period for weatherization measure. 	ł by
Nugget-44	COairFre=COppm(15.3/… •COairFre=306 COppm=200 CO2=10 bound=(-1£99,1£99) •left-rt=0	 ACO20 (air-free carbon monoxide from as-measured carbon monoxide and carbon dioxide for a number 2 oil appliance). COairFre = air-free carbon monoxide in units of parts per million (ppm). COppm = as-measured carbon monoxide in units of ppm. CO2 = percentage carbon monoxide in flue gas (as a percentage, i.e. enter 1 as 10, not as 0.10). 	0%
	GRAPHI WIND I ZOOM I TRACE I SOLVEI		
Nugget-45	COairFre=COppm(20.9/… COairFre=366.6666666 COppm=200 0x92=9.5 bound=(11099,1099) 10ft-rt=0	 ACOAR (air-free carbon monoxide from as-measured carbon monoxide and oxygen percentage in flue gas, any fuel). COairFre = air-free carbon monoxide in units of parts per million (ppm). COppm = as-measured carbon monoxide in units of ppm. Oxy2 = percentage of oxygen in measured air sample (enter 9.5% as 9.5). Comment: To find a CO air free value in a vent, for example, measure the p concentration of CO in the vent. Then measure the percent oxygen. Use the concentration of CO in the vent. 	pm this
	GRAPH WIND ZOOM TRACE SOLVE	equation to find the air free level of carbon monoxide.	
Nugget-46	COairFre=COppm(14/CO COairFre=350 COppm=200 CO2=8 bound=(-1£99,1£99) left-rt=0	 ACOLP (air-free carbon monoxide from as-measured carbon monoxide and carbon dioxide for a liquified propane, LP, appliance). COairFre = air-free carbon monoxide in units of parts per million (ppm). COppm = as-measured carbon monoxide in units of ppm. CO2 = percentage carbon monoxide in flue gas (as a percentage, i.e. enter & as 8, not as 0.8). 	3%
	GRAPHI WIND I ZOOM I TRACE I SOLVE I		
Nugget-47	COairFre=COppm(12.2/ COairFre=305 COppm=200 CO2=8 bound=(-1£99,1£99) left-rt=0	 ACONG (air-free carbon monoxide from as-measured carbon monoxide and carbon dioxide for a natural gas appliance). COairFre = air-free carbon monoxide in units of parts per million (ppm). COppm = as-measured carbon monoxide in units of ppm. CO2 = percentage carbon monoxide in flue gas (as a percentage, i.e. enter & as 8, not as 0.8). 	3%
	GRAPHI WIND I ZOOM I TRACE I SOLVEI		
Nugget-48	COppm=((COairFre*U9*…) •COppm=29.0676003461… COairFre=800 V9=8.5 Gr=54 Nach=1.5	ACORM (for determining the carbon monoxide concentrations in a room from an unvented natural gas or propane appliance, such as a gas range/oven). COppm = resulting room CO concentration in parts per million (ppm). COairFre = air-free CO released from gas appliance in ppm. Vg = ft^3 of flue gas per ft^3 of fuel gas (8.5 ft^3 for natural gas, 21.8 ft^3 for propane).	
	UT=2 Graph wind zoom trace solve	$Gr = gas \text{ flow rate in ft}^{/hr. I his equals} \qquad \frac{input rate (Btu/hr)}{heat value of fuel (Btu/ft^3)}$	See next panel

Nugget-49	COPPM=((COairFre*V9* COairFre=800 V9=8.5 Gr=54 Nach=1.5 t=2 v=8000 GRAPHI WIND I ZOOM TRACE SOLVE	 ACORM continued. (display is scrolled one line from panel "Nugget-48" at the bottom of the previous page). Nach = natural air changes per hour of room or of house. t = time interval, in hours. v = volume of room or of house, in ft³.
Nugget-50	DewPt=1.8*((-4111/(1 DewPt=53.1179778366 HuRa=.0084851718767 bound={-1£99,1£99} left-rt=0	 ADEWP (dewpoint temperature determination). DewPt = air dew point temperature, °F. HuRa = humidity ratio, the ratio of the mass of water vapor to the mass of dry air. Also called the mixing ratio. Note: the humidity ratio is caluculated by the "AHRAT" Equation Nugget by inputting air temperature and relative humidity.
Nugget-51	DuctDia=1.3((s1*s2)^ DuctDia=7.554176309 s1=8 s2=6 bound={-1£99,1£99} • left-rt=0	 ADUCT (round duct diameter to rectangular). DuctDia = equivalent round duct diameter. s1 = one rectangular dimension of the duct . s2 = other rectangular dimension of the duct. Remember, you can enter any two variables here and solve for the third. This is a very useful equation for ductwork design, installation, and retrofit.
Nugget-52	ELAin2=.2835*CFM4 • ELAin2=205.821 CFM4=726 bound=(~1£99,1£99) • left-rt=0 GRAPH WIND ZODM TRACE SOLVE	AELA (effective leakage area from CFM_4). ELAin2 = Effective Leakage Area, in ² (Lawrence Berkeley Labs). CFM4 = CFM at 4 Pascals of building pressure. This value can be calculated using a multi-point blower door test. You must know the house constant and the "Fx" number (flow exponent). This is explained later in this instruction document and can be calculated with a blower door and the TI-86 calculator. The SOLVER equation "AIREQ" is also useful for this calculation. This test was developed by Lawrence Berkeley Laboratory.
Nugget-53	EQLAin=.2939*CFM10 • EQLAin=399.1162 CFM10=1358 bound={-1£99,1£99} • left-rt=0 GRAPHI WIND ZOOM TRACE SOLVE	AEQLA (equivalent leakage area from CFM_{10}). EqLAin = Equivalent Leakage Area, in ² (National Research Coun. of Canada). CFM10 = CFM at 10 Pascals of building pressure. See the comments above in panel "Nugget-52." This test was developed by National Research Council of Canada.
Nugget-54	PI=PRIN(i(1+i)^per)/ • PI=177.95558147923 PRIN=8000 i=.01 per=60 bound=(-1£99,1£99) • left-rt=0 GRAPHI WIND ZODM TRACE SOLVE	AFCOM (payments on loan, interest, principle, periods).PI = principle and interest or payment per period, usually each month.PRIN = the principle or amount of the loan, or present value.i = interest payment per period (per). A 12% annual interest rate on a loan paidback monthly is 0.12/12 months per year = 0.01, as in the example.per = the number of periods of the loan. A five year load with monthlypayments has a "per" = 60, as in the example at the left.Remember, you can solve for any of these variables by entering the others.

Nugget-55	TMCOST=(UTCOST*10000 • TMCOST=.78625078625 UTCOST=.85 BTUUNIT=138600 EF=.78 bound=(-1£99,1£99) • left-rt=0 IGRAPHI WIND ZODM TRACE SOLVE	 AFUEL (per therm cost of fuel). TMCOST = per unit cost of fuel, in dollars and cents. UTCOST = per unit cost of fuel under consideration, in dollars and cents. BTUUNIT = British thermal units (BTU) per unit of fuel under consideration, input value. EF = <u>seasonal</u> efficiency of the space heating unit. Use decimal points. If you enter 1.00, you will get <u>input</u> cost per therm; if you enter seasonal efficiency, you will get <u>output</u> cost per therm. 	ри ,
Nugget-56	H2Der9=GAL9r*(Tout-T H2Der9=190.69292307 GAL9r=18600 Tout=130 Tin=50 EF=.65 BTUUNIT=100000 GRAPHI WIND I ZODM TRACE SOLVE	 AH2O (annual domestic water heating energy consumption). H2Oerg = energy per year for water heating, in fuel units. GALyr = gallons of hot water used per year. Tout = hot water output temperature from heater, °F. Tin = water input temperature, °F. EF = efficiency of water heating appliance. BTUUNIT = per unit input value of water heating fuel. 	
Nugget-57	FUELCOST=DHL*HDD*CD* • FUELCOST=868.535170 DHL=65000 HDD=8000 CD=.62 UTCOST=.85 BTUUNIT=138690 Igraphi wind i 200m i trace i solvei	AHET1 (annual space heating cost).FUELCOST = annual space heating fuel cost, in dollars.DHL = calculated design heat load of building, in Btu/hr. Use an acceptablemethod of calculation.HDD = heating degree days, base 65° F.CD = empirical correction factor for HDD ₆₅ . Refer to page xx of thisdocument for appropriate CD values for your area.UNITCOST = unit cost of fuel, e.g., per gallon of oil, per therm natural gas.	See next panel
Nugget-58	FUELCOST=DHL*HDD*CD* HDD=8000 CD=.62 UTCOST=.85 BTUUNIT=138690 EF=.78 AT=70 GRAPHI WIND 200m TRACE SOLVE	$\begin{array}{l} \textbf{AHET1} \text{ continued. (The screen has been scrolled up two lines)} \\ \textbf{BTUUNIT = input value per unit of fuel, e.g., per gallon of oil.} \\ \textbf{EF = } \underline{Seasonal} \text{ efficiency of the space heating unit. Include losses from} \\ \textbf{distribution system. Note: seasonal efficiency is always less than steady-state efficiency (that which is calculated with a flue-gas analysis tester).} \\ \textbf{T = the design temperature difference. This value should be the same desitemperature difference used to calculate the design heat load (DHL) of the building.} \end{array}$	ign
Nugget-59	SAVE=QUAN*((E2-E1)/E • SAVE=2195,1219512195 QUAN=10000 E2=82 E1=70 OSF=1.5 bound=(-1E99,1E99) GRAPH WIND ZOOM TRACE SOLVE	 AHET2 (savings from heating system efficiency improvements). SAVE = cost or quantity of fuel saved from efficiency improvements. QUAN = cost or quantity of fuel consumed <u>before</u> efficiency improvements. E2 = <u>steady-state</u> efficiency as a result of efficiency improvements. E1 = <u>steady-state</u> efficiency before efficiency improvements. OSF = Off-Cycle Factor: hot air systems, 1.2 to 1.4; hot water systems, 1.4 t 1.6; steam systems, 1.6 to 1.8. 	-0
Nugget-60	ALHcost=(26*HDD*(UTC ALHcost=121.3829013 HDD=8000 UTCOST=.85 BTUUNIT=138690 CFM50=2290 LBLn=18.5 IGRAPHI WIND I ZODM TRACE SOLVE	AHET3 (annual heating costs of air leakage).ALHcost = annual heating cost of air leakage, in dollars.HDD = Heating degree days, base 65° F.UTCOST = Unit cost of heating fuel, e.g., cost per therm of natural gas.BTUUNIT = Input value per unit of fuel, e.g., per therm of natural gas.CFM50 = CFM ₅₀ from the blower door test.LBLn = Lawrence Berkeley Lab. correlation factor. This number isdisplayed by the Building Tightness Limits "BTL1" program, "BTL" routine.	See next panel

Nugget-61	ALHcost=(26*HDD*(UTC) HDD=8000 UTCOST=.85 BTUUNIT=138690 CFM50=2290 LBLn=18.5 EF=.78 GRAPHI WIND I ZOOM ITRACE ISOLVE	AHET3, continued. (The screen has been scrolled up one line). EFF = <u>Seasonal</u> efficiency of the space heating unit. Include losses from the distribution system. Note: seasonal efficiency is always less than steady-state efficiency (that which is calculated with a flue-gas analysis tester).
Nugget-62	SAV100H=(26*100*HDD* • SAV100H=53.00563379 HDD=8000 UTCOST=.85 BTUUNIT=138690 LBLn=18.5 EF=.78 GRAPHI WIND ZOOM TRACE SOLVE	 AHET4 (heating cost-effectiveness guideline for air sealing). SAVIOOH = Heating Cost-Effectiveness Guideline per 100 CFM₅₀ Reduction HDD = Heating degree days, base 65°F. UTCOST = Unit cost of heating fuel, e.g., cost per therm of natural gas. BTUUNIT = Input value per unit of fuel, e.g., per therm of natural gas. LBLn = Lawrence Berkeley Lab. correlation factor. This number is displayed by the Building Tightness Limits "BTL1" program "BTL" routine. (See next panel).
Nugget-63	SAV100H=(26*100*HDD* HDD=8000 UTCOST=.85 BTUUNIT=138690 LBLn=18.5 EF=.78 PBPer=10 GRAPHI WIND I ZOOM ITRACE SOLVE	AHET4 continued. (The screen has been scrolled up one line).EF = Seasonal efficiency of the space heating unit. Include losses fromdistribution system. Note: seasonal efficiency is always less than steady- state efficiency (that which is calculated with a flue-gas analysis tester).PBper = Reasonable payback period for weatherization measures. Comment: The weatherization crew should continue to seal the building until cost of 100 CFM50 reduction is equal to the Cost-Effective Guideline for 100 CFM50 reduction.
Nugget-64	BTU=Area*HDD*24*U • BTU=102816000 Area=1500 HDD=8000 U=.357 bound=(-1£99,1£99) • left-rt=0 IGRAPHI WIND ZOOM TRACE SOLVE	AHET5 (transmission heat transfer through a surface).BTU = transmission heat loss per year through a surface area (Btu/yr).Area = surface area in square feet.HDD = heating degree days, base 65° F.U = thermal transmittance, U-factor. The inverse of R-value.Comment: Use this equation to calculate Btu/hr savings resulting from a decrease in U-factor (increase in R-value).
Nugget-65	BTU=FT2*CG*ACH*.0182 BTU=25998336 FT2=1500 CG=8 ACH=.62 HDD=8000 bound=(-1e99,1e99) GRAPHI WIND ZODM TRACE SOLVE	AHET6 (air leakage heat loss per year).BTU = air leakage heat loss (Btu/yr).FT2 = square feet area of building floor.CG = ceiling height. (FT2 x CG yields building volume).ACH = air changes per hour, natural.See SOLVER Equation Nugget "ACHN."HDD = heating degree days, base 65°F.Comment: For this equation, a CFM50 value is not needed as it is in "ACHN."If you know a pre-weatherization ACH and a post-weatherization ACH, subtract the post-value from pre-value and enter the remainder as "ACH."
Nugget-66	SIR=((LIFE*OSF*FUELC • SIR=1.6724738675958 LIFE=20 OSF=1.5 FUELCOST=800 COST=3500 E2=.82 GRAPHI WIND I ZOOM ITRACE ISOLVE	 AHET7 (analysis for heating system replacement). SIR = savings-to-investment ratio. LIFE = reasonable life of upgrade equipment or replacement heating system. May also use for this variable the Uniform Present Value (UPV) which represents a discounted life value. OSF = Off-Cycle Factor: hot air systems, 1.2 to 1.4; hot water systems, 1.4 to 1.6; steam systems, 1.6 to 1.8. (continued on next panel)

Nugget-67	SIR=((LIFE*OSF*FUELC LIFE=20 OSF=1.5 FUELCOST=800 COST=3500 E2=.82 E1=.62 GRAPHI WIND ZODM TRACE SOLVE	 AHET7, continued. (The screen has been scrolled up one line). FUELCOST = annual space heating cost before upgrade or replacement. COST = total cost of upgrading or replacing heating system, dollars. E2 = steady-state efficiency after upgrade or replacement. E1 = steady-state efficiency before upgrade or replacement.
Nugget-68	HI=(-42.379)+(2.0490 •HI=105.9220206 Tout=90 RH=70 bound=(-1E99,1E99) •left-rt=0	AHI (heat index or apparent temperature). HI = heat index or apparent temperature, used by weather reporters during hot and humid weather. Tout = temperature outdoors, 0 F. RH = relative humidity, as a percentage (enter 70% as 70, not as 0.70).
Nugget-69	HuRa=.62198*RH*.01/(• HuRa=.0084851718767 RH=55 Tin=70 bound=(-1:99,1:99) • left-rt=0	 AHRAT (humidity ratio). HuRa = humidity ratio, the mass of mater vapor to the mass of dry air. RH = relative humidity. Measure this with a good sling psychrometer or digital humidity gauge (inexpensive devices might give inaccurate readings). Tin = Temperature, °F. This may be indoor or outdoor temperature. Comment: the humidity ratio, "HuRa," is required for the dewpoint calculation, SOLVER Equation Nugget "ADEWP."
Nugget-70	©=HC*∞P^Fx • Q=2244.9116584359 HC=157 ∞P=50 Fx=.68 bound={-1£99,1£99} • 1eft-rt=0 GRAPHI WIND I ZOOM TRACE SOLVE	$\begin{array}{l} \mbox{AIREQ} \mbox{ (building air flow rate, air equation).} \\ \mbox{\mathbf{Q} = building air leakage flow rate.} \\ \mbox{\mathbf{HC} = house constant. This value can be calculated using a multi-point blower} \\ \mbox{door test} \mbox{ (the TI-86 can perform this test).} \\ \mbox{\mathbf{P} = building pressure, Pascals.} \\ \mbox{\mathbf{Fx} = building flow exponent. This also can be determined with a multi-point} \\ \mbox{blower door test.} \end{array}$
Nugget-71	AirSed=255.9JVe1Pr • AirSed=1809.4862530 Ve1Pr=50 bound=(-1£99,1£99) • left-rt=0 GRAPHI WIND ZOOM TRACE SOLVE	 AIRSF (air speed in units of feet per minute). AirSpd = air speed in units of feet per minute. YelPr = velocity pressure, in Pascals Comment: This equation is for sea-level air density. This equation will give the pressure against the side of a building, in Pascals, if the wind speed at the side of the building is known. Also, you can measure the velocity pressure of moving air with a digital pressure gauge, enter the value into the equation, and solve for "AirSpd."
Nugget-72	AirSpd=2.91JVelPr •AirSpd=20.576807332… VelPr=50 bound={~1£99,1£99} •left-rt=0	 AIRSP (air speed in units of miles per hour). AirSpd = Air speed, mph. VelPr = Velocity pressure, in Pascals Comment: This equation is for sea-level air density. This equation will give the pressure against the side of a building, in Pascals, if the wind speed at the side of the building is known. Also, you can measure the velocity pressure of

Nugget-73	Mlr=CFM50/AGSarea • Mlr=1.145 CFM50=2290 AGSarea=2000 bound=(-1£99,1£99) • left-rt=0 GRAPHI WIND ZODM TRACE SOLVE	 AMLR (Minneapolis leakage ratio). MIr = Minneapolis leakage ratio. CFM50 = CFM₅₀ from blower door test. AGSarea = Above grade surface area of building. Include above grade walls, windows, doors, attic floors, and other floors over unconditioned space. Comment: For houses with MLR values greater than 1.0, large cost-effective reductions in infiltration can be made. If the MLR is in the range of 0.5 to 1.0, it is more difficult to achieve cost-effective reductions.
Nugget-74	HYP^2=s1^2+s2^2 • HYP=20 s1=12 s2=16 bound=(-1£99,1£99) • left-rt=0 GRAPHI WIND ZOOM TRACE SOLVE	 APYTH (Pythagorean theorem). HYP = Pythagorean theorem \$1 = side 1 of right triangle, in units of length. \$2 = side 2 of right triangle in units of length. Comment: The theorem is: The square of the hypotenuse of a right triangle is equal to the sum of the squares of the two sides. A great equation to know for construction work, i.e., for finding right angles. Multiples of 3, 4, and 5 always work out evenly. This is Leslie's favorite equation.
Nugget-75	KW=RR+(.2*cfm)+(27.5 KW=3840 RR=-600 cfm=1350 EWB=67 OAT=95 bound=(-1e99,1e99) IGRAPHI WIND I ZOOM ITRACEISOLVE	 ARIKW (power requirement of air-to-air cooling equipment). KW = power requirement of air-to-air cooling equipment. RR = a constant, for generic cooling equipment, use -600. cfm = cubic feet per minute flowing through refrigerant coil. EWB = entering wet-bulb temperature, ^oF. OAT = outdoor dry-bulb temperature, ^oF. Comment: See <i>Residential Equipment Selection: Manual S</i>, by Air Conditioning Contractors of America (ACCA), pages A3-1 through A3-2.
Nugget-76	SHR=.82+(.0002*cfm)+ •SHR=.745 cfm=1350 EWB=67 EDB=80 OAT=95 bound=(-1£99,1£99) GRAPHIWIND ZODM TRACEISOLVE	 ARISR (sensible to total capacity ratio of air-to-air cooling equipment). SHR = sensible to total capacity ratio ofm = cubic feet per minute flowing through refrigerant coil. EWB = entering wet-bulb temperature, °F. EDB = entering dry-bulb temperature, °F. OAT = outdoor dry-bulb temperature, °F. Comment: See Residential Equipment Selection: Manual S, by Air Conditioning Contractors of America (ACCA), pages A3-1 through A3-2.
Nugget-77	TC=KK+(3.33*cfm)+(50 • TC=37400.5 KK=20780 cfm=1350 EWB=67 OAT=95 bound=(-1e99,1e99) GRAPHIWIND ZOOM TRACEISOLVE	 ARITC (total capacity of air-to-air cooling equipment). TC = total capacity of air-to-air cooling equipment. KK = a constant, for generic cooling equipment, use 20780. cfm = cubic feet per minute flowing through refrigerant coil. EWB = entering wet-bulb temperature, °F. OAT = outdoor dry-bulb temperature, °F. Comment: See Residential Equipment Selection: Manual S, by Air Conditioning Contractors of America (ACCA), pages A3-1 through A3-2.
Nugget-78	RvalU=(WALLiT-WALLoT • RvalU=12.6190476190 WALLiT=70 WALLoT=17 AIRiT=73 bound=(~1£99,1£99) • left-rt=0 GRAPHIWIND ZODM TRACE SOLVE	 ARVAL (determine R-value with non-contact thermometer). RvalU = calculated R-value of surface using non-contact thermometer. WALLIT = Indoor wall temperature, °F. WALLOT = Outdoor wall temperature, °F. AIRIT = Indoor air temperature, °F. Comment: This equation is useful with non-contact thermometers such as the Raytek[®] Raynger. Be careful of the effect of the sun and other sources of radiant heat. Also, be aware of thermal time lags.

Nugget-79	BZPCent=100*((P2/P1) BZPCent=50.66780125 P2=13 P1=37 bound=(-1£99,1£99) Ieft-rt=0 GRAPHIWIND I ZOOM TRACE SOLVE	 ASERP (bldgto-zone percentage of zone-to-outdoor leakage rate). BZpCent = building-to-zone percentage of zone-to-outdoor leakage rate (also bldgto-duct as percentage of duct-to-outdoor leakage). P2 = zone-to-outside (duct-to-outside) pressure difference, Pascals. P1 = building-to-zone (building-to-duct) pressure difference, Pascals Comment: The example values indicate that the building-to-zone leakage is about 50% of the zone-to-outside leakage.
Nugget-80	SIR=(SAUE/COST)(LIFE) • SIR=1.89 SAUE=1890 COST=10000 LIFE=10 bound=(-1e99,1e99) • left-rt=0 GRAPHIWIND ZODM TRACE SOLVE	 ASIR (simple savings-to-investment ratio). SIR = simple savings-to-investment ratio. SAVE = First-year savings due to energy-saving measure, dollars. COST = Cost of energy-saving measure, dollars. LIFE = Expected life of energy-saving measure, years. Comment: If the SIR is less than one, the energy-saving measure is not worth implementing; if it is more than one, it is worth implementing. The higher the "SIR," the better.
Nugget-81	△P=3.6*(Ho-Hn)((Tin+ • △P=-5.1237574221095 Ho=1 Hn=9 Tin=70 Tout=-10 bound=(-1£99,1£99) GRAPHI WIND ZODM TRACE SOLVE	 ASTAK (building stack pressure at given height). P = building stack pressure at a given height. Ho = height at observation measurement, ft. Hn = height of neutral pressure level, ft. Tin = temperature indoors, °F. Tout = temperature outdoors, °F. For below zero temps., use "(-)" key. Comment: This equation <u>estimates</u> P. The neutral pressure level is usually above mid-height for residential buildings. For tall buildings, it is from 0.3 to 0.7 of total building height. See ASHRAE Fundamentals Handbook.
Nugget-82	AREAtri=Base*Ht/2 • AREAtri=120 Base=24 Ht=10 bound={-1:099,1:099} • left-rt=0 GRAPH WIND ZODM TRACE SOLVE	 ATRIa (area of a triangle). AREAtri = area of a triangle, such as a gable end. The mathematical units used for the base and the height of the triangle are merely squared for the area of the triangle. For the example at the left, a base of 24 feet and a height of 10 feet yields an area of 120 square feet. Base = the base dimension of the triangle. Ht = the height of the triangle.
Nugget-83	UCOST=cfm*dAIR*HrsDa • VCOST=67.392 cfm=100 dAIR=.075 HrsDay=8 HDD=8000 TMCOST=.78 GRAPHI WIND I ZOOM ITRACE SOLVE	AVNT1 (space heating energy consumption for ventilation).VCOST = annual cost of space heating energy for ventilation.cubic feet per minute of exhaust fan(s).dAIR = density of air (at sea level0.075 pounds/cubic foot)See air density correction factors on page 76.HrsDay = hours of average daily running time of exhaust fan(s).HDD = heating degree days, base 65°F.TMCOST = therm cost of space heating fuel.Use Equation Nugget "AFUEL"to determine this value.
Nugget-84	UCOST=cfm*dAIR*HrsDa cfm=100 dAIR=.075 HrsDay=8 HDD=8000 TMCOST=.78 EF=.8 GRAPHI WIND ZOOM TRACE SOLVE	 AVNT1 4, continued. (The screen has been scrolled up one line). EF = seasonal efficiency of the space heating unit. Include losses from distribution system. Note: seasonal efficiency is always less than steady-state efficiency (that which is calculated with a flue-gas analysis tester). Comment: This equation assumes that all make-up air for the exhaust ventilation flows directly from the outside. The value of "VCOST" is the energy required to heat the make-up air that replaces the exhausted ventilation air.

Nugget-85	ElecCost=WattCon*Hrs •ElecCost=13.44 WattCon=70 HrsDay=8 HeatDays=200 KwhCost=.12 bound={~1£99,1£99} IGRAPHI WIND ZODM TRACE SOLVE	AVNT2 (annual electrical consumption for ventilation). ElecCost = annual electrical cost to operate an exhaust fan. WattCon = power consumption of fan, in Watts. HrsDay = hours of average daily running time of exhaust fan(s). HeatDay = heating days per year. A heating day is any day having an average outdoor temperature less that 65°F. KwhCost = cost of electricity, per kWh.
Nugget-86	CostHr=(9pm*head*.74 • CostHr=.02422077922 9pm=20 head=30 CostkWh=.12 PumpEf=.8 MotorEf=.7 GRAPHI WIND ZODM TRACE SOLVE	 AWATC (cost to operate a water pump). CostHr = Cost per hour to operate a water pump. gpm = gallons per minute moved by the pump. head = the head in feet. CostkWh = cost of electricity in kWh. PumpEf = pump efficiency as a decimal. MotorEf = pump motor efficiency as a decimal.
Nugget-87	HrsPwr=(9pm*head)/39… •HrsPwr=.1515151515151… 9pm=20 head=30 bound={-1ε99,1ε99} •left-rt=0	AWATP (horsepower to pump water). HrsPwr = horse power of pump and motor required to pump water. gpm = gallons per minute moved by the pump. head = the head in feet. Prace the EVIT key to evit the GOLVEP feature
Nugget-88	Done	This ends the SOLVER equation section of the instructions. Read Chapter 15 in the <i>TI-86 Graphing Calculator Guidebook</i> for more instruction regarding the SOLVER features of the calculator.
Nugget-89		

SUPPORT INFORMATION

QUALITY OF CONSTRUCTION AND RELATIVE		NUMBER OF DEGREE DAYS (65°F)									
USE OF ELECTRICAL APPLIANCES	1000	2000	3000	4000	5000	6000	7000	8000	9000		
Well-Constructed House. Large quantities of insulation, tight fit on doors and windows, well sealed openings. Large use of electrical appliances. Large availability of solar energy at the house.	0.48	0.45	0.42	0.39	0.36	0.37	0.38	0.39	0.40		
House of Average Construction. Average quantities of insulation, average fit on doors and windows, partially sealed openings. Average availability of solar energy at the house. Average use of electrical appliances.	0.80	0.76	0.70	0.65	0.60	0.61	0.62	0.69	0.67		
Poorly Constructed House. Small quantities of insulation, poor fit on doors and windows, unsealed openings. Small use of electrical appliances. Small availability of solar energy at the house	1.12	1.04	0.98	0.90	0.82	0.85	0.88	0.90	0.92		

Altitude (ft)		Sea Level	1000	2000	3000	4000	5000	6000	7000	8000	9000	10,000
Barometer (in.	Hg) w.q.)	29.92 407.5	28.86 392.8	27.82 378.6	26.82 365.0	25.84 351.7	24.90 338.9	23.98 326.4	23.09 314.3	22.22 302.1	21.39 291.1	20.58 280.1
Air Temp.	-40°	1.26	1.22	1.17	1.13	1.09	1.05	1.01	0.97	0.93	0.90	0.87
°F	0°	1.15	1.11	1.07	1.03	0.99	0.95	0.91	0.89	0.85	0.82	0.79
	40°	1.06	1.02	0.99	0.95	0.92	0.88	0.85	0.82	0.79	0.76	0.73
	70°	1.00	0.96	0.93	0.89	0.86	0.83	0.80	0.77	0.74	0.71	0.69
	100°	0.95	0.92	0.88	0.85	0.81	0.78	0.75	0.73	0.70	0.68	0.65
	150°	0.87	0.84	0.81	0.78	0.75	0.72	0.69	0.67	0.65	0.62	0.60
	200°	0.80	0.77	0.74	0.71	0.69	0.66	0.64	0.62	0.60	0.57	0.55
	250°	0.75	0.72	0.70	0.67	0.64	0.62	0.60	0.58	0.56	0.58	0.51
	300°	0.70	0.67	0.65	0.62	0.60	0.58	0.56	0.54	0.52	0.50	0.48
	350°	0.65	0.62	0.60	0.58	0.56	0.54	0.52	0.51	0.49	0.47	0.45
	400°	0.62	0.60	0.57	0.55	0.53	0.51	0.49	0.48	0.46	0.44	0.42
	450°	0.58	0.56	0.54	0.52	0.50	0.48	0.46	0.45	0.43	0.42	0.40
	500°	0.55	0.53	0.51	0.49	0.47	0.45	0.44	0.43	0.41	0.39	0.38
	550°	0.53	0.51	0.49	0.47	0.45	0.44	0.42	0.41	0.39	0.38	0.36
	600°	0.50	0.48	0.46	0.45	0.43	0.41	0.40	0.39	0.37	0.35	0.34
	700°	0.46	0.44	0.43	0.41	0.39	0.38	0.37	0.35	0.34	0.33	0.32
	800°	0.42	0.40	0.39	0.37	0.36	0.35	0.33	0.32	0.31	0.30	0.29
	900°	0.39	0.37	0.36	0.35	0.33	0.32	0.31	0.30	0.29	0.28	0.27
	1000°	0.36	0.35	0.33	0.32	0.31	0.30	0.29	0.28	0.27	0.26	0.25
			Standar	d Air De	nsity, Se	a Level,	$70^{\circ}F = 0.$	075 lb/c	u ft at 29	.92 in. H	g	
e: HVAC S nsity, d = re: Pa = b	ystei = 1.32 arom	<i>ns Du</i> 25 (Pa etric p	ct Dee 1(46(ressui	5ign, S D+T)) re, in F	MACN Ig	A, 198	31.					

ABMI	The Equation Nuggets as They Appear in the TI-86 Calculator $BMI=(Wt^*704)/Ht^2$
ACFM	$cfm = (CFM5O/50^{.65})(\Delta P^{.65})$
ACFM1	$VentFan = \sqrt{(((Btl/LBLn)^2) - ((CFM50/LBLn)^2))}$
ACFMd	CFMadDp=CFMnom*((Tout+459.7)/(Tin+459.7))^.5
ACFMp	CFMadPr=CFMnom*((Tin+459.7)/(Tout+459.7))^.5
ACH50	ACH5o=CFM5O*60/(FT2*CG)
ACHIL	WCHILL=(((10.45+(6.686112*\screwspresspresspresspresspresspresspressp
ACHN	ACH=CFM5O*60/(LBLn*FT2*CG)
ACIRa	AREAcir=.78539(dia^2)
ACIRc	CIRcir=3.14159dia
ACLG1	ALCcost=((.026*CDD*KWHcost*CFM5O)/(LBLn*SEER))
ACLG2	SAV100C=((.026*100*CDD*KWHcost)/(LBLn*SEER))*PBper
AC020	COairFre=COppm(15.3/CO2)
ACOAR	COairFre=COppm(20.9/(20.9-Oxy2))
ACOLP	COairFre=COppm(14/CO2)
ACONG	COairFre=COppm(12.2/CO2)
ACORM	COppm=((COairFre*Vg*Gr)(1-(1/(2.713^(Nach*t)))))/(Nach*v)
ADEWP	DewPt=1.8*((-4111/(ln (HuRa*101325/(HuRa+.62198))-23.7093)+35.45)-273)+32
ADUCT	DuctDia= $1.3((s1*s2)^{.625})/(s1+s2)^{.25})$
AELA	ELAin2=.2835*CFM4
AEQLA	EQLAin=.2939*CFM10
AFCOM	$PI=PRIN(i(1+i)^{per})/(((1+i)^{per})-1)$
AFUEL	TMCOST=(UTCOST*100000)/(BTUUNIT*EF)
AH2O	H2Oerg=GALyr*(Tout-Tin)*8.33/(EF*BTUUNIT)
AHET1	FUELCOST=DHL*HDD*CD*24(UTCOST/(BTUUNIT*EF))/AT
AHET2	SAVE=QUAN*((E2-E1)/E2)*OSF

	The Equation Nuggets as They Appear in the TI-86 Calculator
AHET3	ALHcost=(26*HDD*(UTCOST/BTUUNIT)*CFM5O/(LBLn*EF)).6
AHET4	SAV100H=(26*100*HDD*(UTCOST/BTUUNIT)/(LBLn*EF)).6*PBper
AHET5	BTU=Area*HDD*24*U
AHET6	BTU=FT2*CG*ACH*.0182*HDD*24
AHET7	SIR=((LIFE*OSF*FUELCOST)/COST)((E2-E1)/E2)
AHI	HI=(-42.379)+(2.04901523(Tout))+(10.14333127(RH))-(.22475541(Tout)(RH)) -(6.83783(10^-3)(Tout^2))-(5.481717(10^-2)(RH^2))+(1.22874(10^-3)(Tout^2)(RH)) +(8.5282(10^-4)(Tout)(RH^2))-(1.99(10^-6)(Tout^2)(RH^2))
AHRAT	HuRa=.62198*RH*.01/((e^(ú23.7093+(4111/((.5555*(Tin-32)+273)-35.45)))*101325)-RH*.01)
AIREQ	Q=HC*∆P^Fx
AIRSF	AirSpd=255.9 √VelPr
AIRSP	AirSpd=2.91 √VelPr
AMLR	Mlr=CFM50/AGSarea
APYTH	HYP^2=s1^2+s2^2
ARIKW	KW=RR+(.2*cfm)+(27.5*EWB)+(24.5*OAT)
ARISR	SHR=.82+(.0002*cfm)+(0475*EWB)+(.0325*EDB)+(.0025*OAT)
ARITC	TC=KK+(3.33*cfm)+(500*EWB)+(-225*OAT)
ARVAL	RvalU=(WALLiT-WALLoT)/(1.4(AIRiT-WALLiT))
ASERP	BZpCent=100*((P2/P1)^.65
ASIR	SIR=(SAVE/COST)(LIFE)
ASTAK	ΔP=3.6*(Ho-Hn)((Tin+459.67)-(Tout+459.67))/(Tout+459.67)
ATRIa	AREAtri=Base*Ht/2
AVNT1	VCOST=cfm*dAIR*HrsDay*.24*HDD*TMCOST(.0006/EF)
AVNT2	ElecCost=WattCon*HrsDay*HeatDays*KwhCost*.001
AWATC	CostHr=(gpm*head*.746*CostkWh)/(3960*PumpEf*MotorEf)
AWATP	HrsPwr=(gpm*head)/3960

The Equation Nuggets with Labels

1.	ABMI	(Body Mass Index)
2.	ACFM	(pressure created by exhaust devices)
З.	ACFM1	(determination of vent fan size when house is "too tight")
4.	ACFMd	(depressurization blower door result temperature adjusted)
5.	ACFMp	(pressurization blower door result temperature adjusted)
	I	
6.	ACH50	(air changes per hour at 50 Pascals building pressure from CMF_{50})
7.	ACHIL	(equivalent wind chill temperature)
8.	ACHN	(building air change per hour at natural pressure).
9.	ACIRa	(area of a circle)
10.	ACIRc	(circumference of a circle)
11.	ACLG1	(annual cooling cost of air leakage)
12.	ACLG2	(cooling cost-effectiveness guideline for air sealing)
13.	AC020	(air-free carbon monoxide from as-measured carbon monoxide and carbon dioxide for a number 2 oil appliance)
14.	ACOAR	(air-free carbon monoxide from as-measured carbon monoxide and oxygen percentage in flue gas, any fuel)
15.	ACOLP	(air-free carbon monoxide from as-measured carbon monoxide and carbon dioxide
		for a liquefied propane, LP, appliance)
16.	ACONG	(air-free carbon monoxide from as-measured carbon monoxide and carbon dioxide for a natural gas appliance)
17.	ACORM	(for determining the carbon monoxide concentrations in a room from an unvented natural gas or propane appliance, such as a gas range/oven)
18.	ADEWP	(dewpoint temperature determination)
19.	ADUCT	(round duct diameter to rectangular)
20.	AELA	(effective leakage area from CFM)
201		
21.	AEQLA	(equivalent leakage area from CFM10)
22.	AFCOM	(payments on loan, interest, principle, periods)
23.	AFUEL	(per therm cost of fuel)
24.	AH20	(annual domestic water heating energy consumption)
25.	AHET1	(annual space heating cost)

		The Equation Nuggets with Labels (continued)
26.	AHET2	(savings from heating system efficiency improvements)
27.	AHET3	(annual heating costs of air leakage)
28.	AHET4	(heating cost-effectiveness guideline for air sealing)
29.	AHET5	(transmission heat transfer through a surface)
30.	AHET6	(air leakage heat loss per year)
31.	AHET7	(analysis for heating system replacement)
32.	AHI	(heat index or apparent temperature)
33.	AHRAT	(humidity ratio)
34.	AIREQ	(building air flow rate, air equation)
35.	AIRSF	(air speed in units of feet per minute)
36.	Airsp	(air speed in units of miles per hour)
37.	Amlr	(Minneapolis leakage ratio)
38.	Apyth	(Pythagorean theorem)
39.	Arikw	(power requirement of air-to-air cooling equipment)
40.	Arisr	(sensible to total capacity ratio of air-to-air cooling equipment)
41.	ARITC	(total capacity of air-to-air cooling equipment)
42.	ARVAL	(determine R-value with non-contact thermometer)
43.	ASERP	(bldgto-zone percentage of zone-to-outdoor leakage rate)
44.	ASIR	(simple savings-to-investment ratio)
45.	ASTAK	(building stack pressure at given height)
46.	ATRIa	(area of a triangle)
47.	AVNT1	(space heating energy consumption for ventilation)
48.	AVNT2	(annual electrical consumption for ventilation)
49.	AWATC	(cost to operate a water pump)
50.	AWATP	(horsepower to pump water)