Installed Insulation Density Calculation

a) Wall width or length in inches = (feet x 12 inches/foot) = \(a \) in

b) Wall height in inches = \(b \) in

c) Gross wall square inches = \(a \times b \) = \(c \) in\(^2\)

d) Square inches of windows and doors in wall =
 - Multiply opening width by opening height (use space below for drawings)
 \(d \) in\(^2\)

e) Net wall in square inches = \(c - d \) = \(e \) in\(^2\)

f) Wall depth in inches = \(f \) in

g) Net wall cavity cubic feet to be insulated = \(\frac{\text{in}^3}{1728 \text{ in}^3 / \text{ft}^3} = \frac{e \times f}{1728} = g \) ft\(^3\)

h) Net wall cavity cubic feet adjusted for framing = \(g \times 0.85 = h \) ft\(^3\)

i) Pounds of insulation installed in cavity (see line “h”) = \(i \) lbs

j) Pounds per cubic foot of insulation = \(\frac{\text{Pounds of insulation}}{\text{Cubic feet to be insulated}} = \frac{i}{h} = j \) lbs/ft\(^3\)

<table>
<thead>
<tr>
<th>Insulation</th>
<th>Wall</th>
<th>Attic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dense Pack</td>
<td>Site-Built Mobile Home</td>
</tr>
<tr>
<td>Cellulose</td>
<td>3.25 – 3.75</td>
<td>Man. Recommendations</td>
</tr>
</tbody>
</table>
| Fiberglass | 1.6 | N/A | 1.6

© 2003 R.J. Karg Associates
This document is available at www.karg.com/papers.htm
Installed Insulation Density Calculation

Example

a) Wall width or length in inches = (feet x 12 inches/foot) =

a) 240 in

b) Wall height in inches =

b) 96 in

c) Gross wall square inches = \(a \times b = \)

c) 23,040 in\(^2\)

d) Square inches of windows and doors in wall =
 - Multiply opening width by opening height (use space below for drawings)

- Gross wall is 20'-0" x 8'-0" (23,040 in\(^2\))

- Total square inches of all openings =

 d) 8,064 in\(^2\)

e) Net wall in square inches = \(c - d = \)

 e) 14,976 in\(^2\)

f) Wall depth in inches =

 f) 3.5 in

g) Net wall cavity cubic feet to be insulated =
 \[
 \frac{\text{in}^3}{1728 \text{in}^3 / \text{ft}^3} = \frac{e \times f}{1728} = \]

 g) 30.33 ft\(^3\)

h) Net wall cavity cubic feet adjusted for framing = \(g \times 0.85 = \)

 h) 25.8 ft\(^3\)

i) Pounds of insulation installed in cavity (see line “h”) =

 i) 90 lbs

j) Pounds per cubic foot of insulation =
 \[
 \frac{\text{Pounds of insulation}}{\text{Cubic feet to be insulated}} = \frac{i}{h} = \]

 j) 3.5 lbs/ft\(^3\)

<table>
<thead>
<tr>
<th>Insulation</th>
<th>Wall Dense Pack</th>
<th>Wall Site-Built</th>
<th>Wall Mobile Home</th>
<th>Attic Man. Recommendations</th>
<th>Attic Mobile Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellulose</td>
<td>3.25 – 3.75</td>
<td>Man. Recommendations</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiberglass</td>
<td>1.6</td>
<td>N/A</td>
<td></td>
<td>1.6</td>
<td></td>
</tr>
</tbody>
</table>

© 2003 R.J. Karg Associates
This document is available at www.karg.com/papers.htm
Required Bags of Insulation for Specified Density

a) Wall width or length in inches = (feet x 12 inches/foot) =

b) Wall height in inches =

c) Gross wall square inches = $a \times b =$

d) Square inches of windows and doors in wall =
- Multiply opening width by opening height (use space below for drawings)

- Total square inches of all openings =

e) Net wall in square inches = $c - d =$

f) Wall depth in inches =

g) Net wall cavity cubic feet to be insulated = $\frac{\text{in}^3}{1728 \text{in}^3/\text{ft}^3} = \frac{e \times f}{1728} =$

h) Net wall cavity cubic feet adjusted for framing = $g \times 0.85 =$

i) Insulation density required (see table below) =

j) Pounds of insulation required = Ft^3 of wall \times density = $i \times h =$

k) Pounds per bag of insulation =

l) Bags of insulation required = $\frac{\text{Lbs of insulation required}}{\text{Lbs per bag of insulation}} = \frac{j}{k}$

<table>
<thead>
<tr>
<th>Insulation</th>
<th>Wall Dense Pack</th>
<th>Wall Site-Built</th>
<th>Attic Mobile Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellulose</td>
<td>3.25 – 3.75</td>
<td>Man. Recommendations</td>
<td>N/A</td>
</tr>
<tr>
<td>Fiberglass</td>
<td>1.6</td>
<td>N/A</td>
<td>1.6</td>
</tr>
</tbody>
</table>

© 2003 R.J. Karg Associates
This document is available at www.karg.com/papers.htm
Required Bags of Insulation for Specified Density

Example

a) Wall width or length in inches = (feet x 12 inches/foot) = a) 240 in

b) Wall height in inches = b) 96 in

c) Gross wall square inches = $a \times b = c) 23,040 \text{ in}^2$

d) Square inches of windows and doors in wall =

- Multiply opening width by opening height (use space below for drawings)

<table>
<thead>
<tr>
<th>Door 36” x 80” (2,880 in²)</th>
<th>Window 36” x 48” (1,728 in²)</th>
<th>Window 36” x 48” (1,728 in²)</th>
<th>Window 36” x 48” (1,728 in²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gross wall is 20’-0” x 8’-0” (23,040 in²)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Total square inches of all openings =

d) 8,064 in²
e) 14,976 in²

f) 3.5 in

g) Net wall cavity cubic feet to be insulated =

$$\frac{\text{in}^3}{1728 \text{ in}^3 / \text{ft}^3} = \frac{e \times f}{1728} =$$

h) Net wall cavity cubic feet adjusted for framing = $g \times 0.85 =$

i) Insulation density required (see table below) =

j) Pounds of insulation required = $\text{Ft}^3 \times \text{wall} \times \text{density} = i \times h =$

k) Pounds per bag of insulation =

l) Bags of insulation required =

$$\frac{\text{Lbs of insulation required}}{\text{Lbs per bag of insulation}} = \frac{j}{k}$$

Recommended Insulation Density, lbs/ft³

<table>
<thead>
<tr>
<th>Insulation</th>
<th>Wall</th>
<th>Attic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dense Pack</td>
<td>Site-Built</td>
</tr>
<tr>
<td>Cellulose</td>
<td>3.25 – 3.75</td>
<td>Man. Recommendations</td>
</tr>
<tr>
<td>Fiberglass</td>
<td>1.6</td>
<td>N/A</td>
</tr>
</tbody>
</table>

© 2003 R.J. Karg Associates
This document is available at www.karg.com/papers.htm