Installed Insulation Density Calculation

- a) Wall width or length in inches = (feet x 12 inches/foot) =
- a) in

b) Wall height in inches =

b) in

c) Gross wall square inches = $a \times b =$

c) in²

- d) Square inches of windows and doors in wall =
 - Multiply opening width by opening height (use space below for drawings)

- Total square inches of all openings =

d) in²

e) Net wall in square inches = c - d =

e) in²

f) Wall depth in inches =

- f) in
- g) Net wall cavity cubic feet to be insulated = $\frac{in^3}{1728 in^3 / ft^3} = \frac{e \times f}{1728} = \frac{e \times f}{1728}$
- g) ft³

h)

- h) Net wall cavity cubic feet adjusted for framing = $g \times 0.85 =$ Adjusted for framing materials

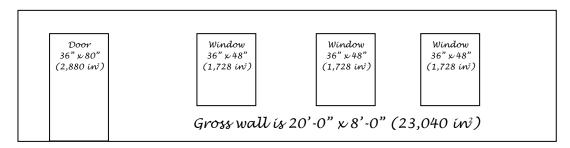
ft³

- i) Pounds of insulation installed in cavity (see line "h") =
- i) lbs
- j) Pounds per cubic foot of insulation = $\frac{\text{Pounds of insulation}}{\text{Cubic feet to be insulated}} = \frac{i}{h} = \boxed{\text{j}}$ lbs/ ft³

Recommended Insulation Density, lbs/ft ³					
Insulation	Wall	Attic			
	Dense Pack	Site-Built	Mobile Home		
Cellulose	3.25 - 3.75	Man. Recommendations	N/A		
Fiberglass	1.6	N/A	1.6		

Installed Insulation Density Calculation Example

- a) Wall width or length in inches = (feet x 12 inches/foot) =
- a) 240 in


b) Wall height in inches =

b) 96 in

c) Gross wall square inches = $a \times b =$

c) 23,040 in²

- d) Square inches of windows and doors in wall =
 - Multiply opening width by opening height (use space below for drawings)

- Total square inches of all openings =

d) 8,064 in²

e) Net wall in square inches = c - d =

e) 14,976 in²

f) Wall depth in inches =

- f) 3.5 in
- g) Net wall cavity cubic feet to be insulated = $\frac{in^3}{1728 in^3 / ft^3} = \frac{e \times f}{1728} = \boxed{g}$
 - g) 30.33 ft³
- h) Net wall cavity cubic feet adjusted for framing = $g \times 0.85 =$ Adjusted for framing materials
- h) 25.8 ft³
- i) Pounds of insulation installed in cavity (see line "h") =
- i) 90 lbs
- j) Pounds per cubic foot of insulation = $\frac{\text{Pounds of insulation}}{\text{Cubic feet to be insulated}} = \frac{i}{h} = [j]$ 3.5 lbs/ ft³

Recommended Insulation Density, lbs/ft ³					
Insulation	Wall	Attic			
	Dense Pack	Site-Built	Mobile Home		
Cellulose	3.25 – 3.75	Man. Recommendations	N/A		
Fiberglass	1.6	N/A	1.6		

Required Bags of Insulation for Specified Density

- a) Wall width or length in inches = (feet x 12 inches/foot) =
- a) in

b) Wall height in inches =

b) in

c) Gross wall square inches = $a \times b$ =

 in^2 c)

- d) Square inches of windows and doors in wall =
 - Multiply opening width by opening height (use space below for drawings)

- Total square inches of all openings =

 in^2 d)

e) Net wall in square inches = c - d =

 in^2 e)

f) Wall depth in inches =

f) in

 ft^3

- g) Net wall cavity cubic feet to be insulated = $\frac{in^3}{1728 in^3 / ft^3} = \frac{e \times f}{1728} =$ Adjusted for windows and doors
- g)
- h) Net wall cavity cubic feet adjusted for framing = $g \times 0.85 =$ Adjusted for framing materials
- ft^3 h)

i) Insulation density required (see table below) =

- lbs/ ft³ i)
- j) Pounds of insulation required = Ft^3 of wall × density = $i \times h$ =
- j) lbs

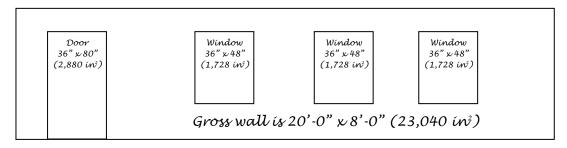
k) Pounds per bag of insulation =

- k) lbs/bag
- I) Bags of insulation required = $\frac{\text{Lbs of insulation required}}{\text{Lbs per bag of insulation}} = \frac{j}{k}$
- I) bags

Recommended Insulation Density, lbs/ft ³					
Insulation	Wall	Attic			
	Dense Pack	Site-Built	Mobile Home		
Cellulose	3.25 – 3.75	Man. Recommendations	N/A		
Fiberglass	1.6	N/A	1.6		

Required Bags of Insulation for Specified Density Example

- a) Wall width or length in inches = (feet x 12 inches/foot) =
- a) 240 in


b) Wall height in inches =

b) 96 in

c) Gross wall square inches = $a \times b$ =

c) 23,040 in²

- d) Square inches of windows and doors in wall =
 - Multiply opening width by opening height (use space below for drawings)

- Total square inches of all openings =

d) $8,064 \text{ in}^2$

e) Net wall in square inches = c - d =

e) 14,976 in²

f) Wall depth in inches =

- f) 3.5 in
- g) Net wall cavity cubic feet to be insulated = $\frac{in^3}{1728 in^3 / ft^3} = \frac{e \times f}{1728} = \frac{e \times f}{1728}$
- g) 30.33 ft³
- h) Net wall cavity cubic feet adjusted for framing = $g \times 0.85 =$ Adjusted for framing materials
- h) 25.8 ft³

i) Insulation density required (see table below) =

- i) 3.5 lbs/ ft³
- j) Pounds of insulation required = Ft^3 of wall × density = $i \times h$ =
- j) 90.3 lbs

k) Pounds per bag of insulation =

- k) 15 lbs/bag
- I) Bags of insulation required = $\frac{\text{Lbs of insulation required}}{\text{Lbs per bag of insulation}} = \frac{j}{k}$
- I) 6 bags

Recommended Insulation Density, lbs/ft ³					
Insulation	Wall	Attic			
	Dense Pack	Site-Built	Mobile Home		
Cellulose	3.25 - 3.75	Man. Recommendations	N/A		
Fiberglass	1.6	N/A	1.6		